Make Money From Coding

Integration Guides

Learn how to integrate Make Money From Coding with popular development tools and AI assistants to build and sell products faster.

AI Coding Tools

Using Claude Code

Claude Code is an AI-powered coding assistant that can help you build products quickly.

Quick Start:

  1. Install Claude Code CLI

  2. Set your MMFC API key as an environment variable:

    export MMFC_API_KEY="your_api_key_here"
    
  3. Create a new product with Claude Code:

    Create a new digital product on Make Money From Coding with the following details:
    - Title: "Advanced React Hooks Collection"
    - Description: "10 custom React hooks for common use cases"
    - Price: $29
    - Include example code and documentation
    
  4. Claude Code will use the API to create the product and can even generate the product files for you.

Example Workflow:

@claude I want to create and sell a Next.js starter template on MMFC.

1. Create the Next.js template with these features:
   - Authentication (NextAuth.js)
   - Database (Prisma + PostgreSQL)
   - Payments (Stripe)
   - Dark mode
   - Responsive design

2. Package it as a ZIP file
3. Create the product on MMFC via API with:
   - Title: "Complete Next.js SaaS Starter"
   - Price: $49
   - Description highlighting all features
   - Upload the ZIP file

4. Generate a README and setup guide to include in the package

Using Cursor

Cursor is another AI-powered code editor.

Setup:

  1. Add MMFC API configuration to your .cursorrules:

    When creating products for Make Money From Coding:
    - Use the API endpoint: https://makemoneyfromcoding.com/api
    - API key is in MMFC_API_KEY environment variable
    - Price should be in cents (e.g., 2900 for $29.00)
    
  2. Ask Cursor to help you build and publish products:

    "Create a Python script that uses the Anthropic API to analyze code quality,
    then package it and list it on Make Money From Coding for $19"
    

Using GitHub Copilot

GitHub Copilot can help you write integration code:

// Copilot will auto-complete based on comments
// Create a new product on MMFC
async function createMMFCProduct(title: string, price: number) {
  // Make POST request to MMFC API...
  // [Copilot will suggest the full implementation]
}

Workflow Automation

Automate Product Creation

Use AI tools to generate products and automatically list them:

Example: Generate and Sell React Components

# generate_components.py
import anthropic
import requests
import os

# Initialize Claude
claude = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))

# Generate component code with Claude
def generate_component(component_name, description):
    message = claude.messages.create(
        model="claude-3-5-sonnet-20241022",
        max_tokens=2048,
        messages=[{
            "role": "user",
            "content": f"Create a production-ready React component for {description}. Include TypeScript types, props interface, and full documentation."
        }]
    )
    return message.content[0].text

# Create product on MMFC
def create_mmfc_product(title, description, files):
    api_key = os.getenv("MMFC_API_KEY")
    response = requests.post(
        "https://makemoneyfromcoding.com/api/products",
        headers={"Authorization": f"Bearer {api_key}"},
        json={
            "title": title,
            "description": description,
            "price": 1900,  # $19
            "files": files
        }
    )
    return response.json()

# Generate 5 components and list them
components = [
    "DataTable with sorting and filtering",
    "File Upload with drag-and-drop",
    "Chart component using recharts",
    "Form builder with validation",
    "Modal dialog system"
]

for comp in components:
    code = generate_component(comp, comp)
    # Package and upload...
    # create_mmfc_product(...)

Continuous Product Updates

Set up a workflow to automatically update products when you push code:

# .github/workflows/update-product.yml
name: Update MMFC Product

on:
  push:
    branches: [ main ]

jobs:
  update:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2

      - name: Package Product
        run: zip -r product.zip src/ README.md

      - name: Update on MMFC
        env:
          MMFC_API_KEY: ${{ secrets.MMFC_API_KEY }}
        run: |
          curl -X PATCH \
            https://makemoneyfromcoding.com/api/products/$PRODUCT_ID \
            -H "Authorization: Bearer $MMFC_API_KEY" \
            -F "file=@product.zip"

Building Products with AI

AI-Generated Course Content

Use AI to help create course material:

  1. Outline: Ask Claude/GPT to create a course outline
  2. Content: Generate lesson content and code examples
  3. Package: Combine into PDF/video format
  4. Sell: List on MMFC

Example Prompt:

Create a complete course on "Building REST APIs with Node.js and Express" including:
- 10 lesson outlines
- Code examples for each lesson
- Exercises and solutions
- Final project idea

Package this in a format I can sell on Make Money From Coding.

AI-Powered Code Templates

Generate starter templates with AI and sell them:

Claude, create a production-ready Express.js API starter template with:
- TypeScript
- Authentication (JWT)
- Database (PostgreSQL with Prisma)
- Docker setup
- API documentation
- Test suite
- CI/CD config

Package it so I can sell it on MMFC for $39.

Integration Examples

Next.js + MMFC

// app/products/sync/route.ts
import { NextResponse } from 'next/server';

export async function POST(request: Request) {
  const MMFC_API_KEY = process.env.MMFC_API_KEY;

  // Create product on your site and MMFC simultaneously
  const data = await request.json();

  const response = await fetch('https://makemoneyfromcoding.com/api/products', {
    method: 'POST',
    headers: {
      'Authorization': `Bearer ${MMFC_API_KEY}`,
      'Content-Type': 'application/json',
    },
    body: JSON.stringify(data),
  });

  const product = await response.json();

  return NextResponse.json(product);
}

Python + MMFC

# mmfc_integration.py
import os
import requests
from typing import Dict, List

class MMFCClient:
    def __init__(self):
        self.api_key = os.getenv("MMFC_API_KEY")
        self.base_url = "https://makemoneyfromcoding.com/api"
        self.headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }

    def create_product(self, title: str, description: str, price: int) -> Dict:
        """Create a new product"""
        response = requests.post(
            f"{self.base_url}/products",
            headers=self.headers,
            json={
                "title": title,
                "description": description,
                "price": price,
                "currency": "usd"
            }
        )
        response.raise_for_status()
        return response.json()

    def get_sales(self, limit: int = 50) -> List[Dict]:
        """Get recent sales"""
        response = requests.get(
            f"{self.base_url}/sales",
            headers=self.headers,
            params={"limit": limit}
        )
        response.raise_for_status()
        return response.json()["sales"]

    def get_analytics(self, start_date: str, end_date: str) -> Dict:
        """Get sales analytics"""
        response = requests.get(
            f"{self.base_url}/analytics/sales",
            headers=self.headers,
            params={
                "from": start_date,
                "to": end_date,
                "groupBy": "day"
            }
        )
        response.raise_for_status()
        return response.json()["analytics"]

# Usage
client = MMFCClient()

# Create a product
product = client.create_product(
    title="Advanced Python Tutorials",
    description="10 advanced Python tutorials with code",
    price=2900
)
print(f"Created product: {product['product']['slug']}")

# Check sales
sales = client.get_sales()
print(f"Recent sales: {len(sales)}")

Tips for Success

1. Leverage AI for Speed

Use AI tools to generate:

  • Product descriptions
  • Code examples
  • Documentation
  • Marketing copy
  • Tutorial content

2. Automate Everything

  • Product creation
  • File packaging
  • Price updates
  • Sales notifications
  • Analytics reporting

3. Quality Over Quantity

AI helps you work faster, but always review and test:

  • Code should work correctly
  • Documentation should be clear
  • Examples should be practical
  • Content should provide real value

4. Iterate Based on Feedback

Use analytics to see what sells:

analytics = client.get_analytics("2025-01-01", "2025-01-31")
print(f"Best selling products: {analytics['topProducts']}")

Next Steps

Need help with integration? Email support@makemoneyfromcoding.com

Integration Guides